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Density functional theory of liquid crystals and surface anchoring
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This paper applies the density functional theory to confined liquid crystals comprising ellipsoidal shaped
particles interacting through the hard Gaussian overlap (HGO) potential. The restricted orientation model
proposed by Rickayzen [Mol. Phys. 95, 393 (1998)] is extended to study the surface anchoring. The excess
free energy is calculated as a functional expansion of density around a reference homogeneous fluid. The pair
direct correlation function (DCF) of a homogeneous HGO fluid is approximated, based on the Percus-Yevick
DCF for hard spheres; the anisotropy is introduced by means of the closest approach parameter. The average
number density and orientational order parameter profiles of a HGO fluid confined in between planar walls are
obtained using a hard needle-wall potential to represent the particle-wall interactions. For short and long needle
lengths, the homeotropic and planar anchoring are observed, respectively. For the bulk isotropic phase the
calculated density and order parameter profiles are in agreement with the Monte Carlo simulation of Barmes
and Cleaver [Phys. Rev. E 69, 61705 (2004)]. However, for the bulk nematic phase the theory gives the correct
density profile between the walls. The correct order parameters are obtained close to the walls whereas for the
region in the middle of the walls, the agreement is less satisfactory.
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I. INTRODUCTION

The structure of confined liquid crystals plays an impor-
tant role in the technology of liquid crystal displays [1-3].
When a liquid crystal is placed in contact with another phase,
in particular a solid, the surface induces structural changes in
the liquid [4,5]. The tendency of liquid crystals to orient in a
particular direction when in contact with the container wall is
called anchoring [6,7]. This phenomenon of orientation of a
liquid crystal is very similar to epitaxy of a solid on a sub-
strate. The effects of surface and anchoring in liquid crystals
are reviewed by Jerome [1] and a brief review of the anchor-
ing transition at liquid crystal surfaces is given by Slukin [8].
The concept of anchoring may be assumed as analogous to
the concept of the phase for the state of matter. The anchor-
ing induced by an interface is known as planar, tilted, or
homeotropic depending on whether the anchoring directions
are, respectively, parallel, tilted, or perpendicular to the plane
of the interface. The influence of the surface on liquid crys-
tals is an interesting subject from the theoretical and experi-
mental point of view [4,9,10].

In this paper we use a density functional theory to study
the surface influence on liquid crystalline systems. Since in
the liquid crystal the elastic theory [6] is completely inappli-
cable when the density, the direction of ordering, and the
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order parameter vary rapidly with positions [9], the density
functional theory is helpful. Density functional theories [11]
are capable of predicting the phase diagram of liquid crystals
[12,13], including translational ordered phases such as smec-
tics, and of describing the structure near a solid surface.
Allen [6] showed that even the simplest density functional
theory, the Onsager theory [14], can describe the structure of
the surface layer under the influence of an external perturba-
tion. Density functional theory has also been used to study
the thermodynamics of homogeneous molecular fluids [15]
and structural properties of inhomogeneous molecular fluids,
such as hard ellipsoids [16,17], hard circular cylinders [18],
and hard Gaussian overlap (HGO) [19] fluids confined be-
tween planar walls. Here we use a simple model of liquid
crystals, where the interaction potential between the particles
is assumed to be of a HGO type [20,21].

We use the hypernetted chain (HNC) density functional
proposed by Rickayzen and co-workers [16], and extend
their restricted orientation model to study confined HGO flu-
ids comprising molecules which can be aligned in more than
six directions. The grand potential as a functional of the
number density of molecules is minimized to obtain the
number densities, density profiles, and order parameters of a
liquid crystal confined between planar walls. We then con-
sider the surface anchoring, study the anchoring transition
from planar to homeotropic alignment, and compare our re-
sults with Monte Carlo simulations [22]. In this paper we
show that for the bulk isotropic density, the density func-
tional theory used here gives the correct results for the den-
sity and the order parameter profiles. In addition, we show
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FIG. 1. Number density profiles of molecules as a function of
reduced distance from the center of slit, z*, for k=3, pp=0.246,
k;=0.6, and h"=12. The solid curve is our calculation and the dots
are from the Monte Carlo simulation [22].

that for the nematic bulk density the correct angular averaged
density profile can be obtained anywhere between the walls,
whereas the correct order parameter can be obtained near the
walls and there are some discrepancies in the middle of the
walls. In Sec. II we describe the density functional theory of
molecular fluids confined between planar walls, and in Sec.
IIT we obtain the direct correlation function of HGO fluids.
Finally, in Sec. IV we obtain the results and present our
conclusions.

II. THEORY

We consider the grand potential of a molecular fluid con-
fined in between parallel planar walls as a functional of num-
ber density p, and we choose the z axis normal to the wall,
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FIG. 2. Order parameter as a function of z*, using the same
parameters as in Fig. 1. The solid curve is our calculation and the
dots are from the Monte Carlo simulation [22].
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FIG. 3. Number density profiles of molecules as a function of z*
for k=5, k,=1, pg=0.1, and h"=20. The solid curve is our calcula-
tion and the dots are from the Monte Carlo simulation [29].

and the origin z=0 to be midway between the walls. In the
HNC approximation, the grand potential per unit area with
respect to its bulk value, Q[p], is given by [16]

&[p]:sz dw p(z,w){ln(w) - 1]
A PB

+ ,8[ dz dw p(z,w)v(z,w)
1
- 5 f dZ1dW]dZ2dWZC(Zl’WI’ZZ’W29PB)

X (P(Z1,W1) - %j) (P(Z%Wz) - %), (1)

T

where w=(0,¢) denotes the molecular orientation,
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FIG. 4. Order parameter as a function of z*, using the same
parameters as in Fig. 3. The solid curve is our calculation and the
dots are from the Monte Carlo simulation [29].
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FIG. 5. Number density profiles of molecules as a function of
reduced distance from the wall, z*, for k=3, pp=0.246, k;=2.4, and
h*=12. The solid curve is our calculation and the dots are from the
Monte Carlo simulation [22].

B=1/kgT, A is the surface area perpendicular to the z axis,
pgp is the bulk density of the fluid, v(z,w) is the external
potential, and c¢(z;,w;,2,,Ws;pp) is written as

1
C(217W1a22,W2§P3)=Zfdx1d)’1dx2d)’2c(l'1’W1,r2,W2§PB),

2)

where C(r,w;,r,,w,;pp) is the direct correlation function
(DCF) of a homogeneous fluid. In Eq. (1), wy is the total
solid angle available to each molecule. We assume that each
molecule can be aligned in N=2m? different directions,
Wop= (6,, qpﬁ), and choose

ZzZ

FIG. 6. Order parameter as a function of z*, using the same
parameters as in Fig. 5. The solid curve is our calculation and the
dots are from the Monte Carlo simulation [22].
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FIG. 7. Number density profiles of molecules as a function of z*
for k=5 k,=4, pg=0.1, and 4" =20. The solid curve is our calcula-
tion and the dots are from the Monte Carlo simulation [29].

2a+1
cos O,=—-1+ , a=0,1,....,m-1 (3)
m
and
T
‘P/;=Bn—1, B=0,...2m-1. (4)

These allowed directions are uniformly distributed over the
surface of a sphere, so equal weighting can be assigned to
them. In Eq. (1), the integral of the number density, p(z,w),
over all orientations, is replaced by a sum of density compo-
nents, p,s(z), over allowed orientations w g, where
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FIG. 8. Order parameter as a function of z*, using the same
parameters as in Fig. 7. The solid curve is our calculation and the
dots are from the Monte Carlo simulation [29].
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FIG. 9. Number density profiles of molecules as a function of z*
for k=3 k,=0.6 pg=0.325, and h"=12. The solid curve is our cal-
culation and the dots are from the Monte Carlo simulation [29].

J dw plz.w) = 2 pag2). (5)
aB
In a homogeneous fluid we have

> Pap(2) = Npag(z) = pp. (6)
a,B

The particle-wall interaction has been modeled using a hard
needle-wall (HNW) potential, where the particle-surface in-
teraction is represented by a needle, of reduced length k,,
located at the center of of the particle [5,19,22]. More detail
is given in Ref. [22]. Thus the HNW potential is defined as
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FIG. 10. Order parameter as a function of z", using the same
parameters as in Fig. 9. The solid curve is our calculation and the
dots are from the Monte Carlo simulation [29].
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FIG. 11. Number density profiles of molecules as a function of
7" for k=3, k,=2.4, pp=0.325, and h"=12. The solid curve is our
calculation and the dots are from the Monte Carlo simulation [29].

0, if h2+z=o0, and h/2-z= 0,
v(z,6,) = . (7)
) otherwise,
and
o, = |bk, cos 8|, (8)

where 2b, the length of the minor axis of the molecules, is
assumed to be the unit length here, % is the separation of the
walls, and the coordinates (z, 6,) refer to the position and
orientation of the molecules. Consequently, p,(z)=0 for
|z| >h,/2, where

he h

—“==-0,. 9
> =5 0w ©)
Equation (1) is therefore approximated by
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FIG. 12. Order parameter as a function of 7", using the same
parameters as in Fig. 11. The solid curve is our calculation and the
dots are from the Monte Carlo simulation [29].
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where A is the area of the walls and

Caﬁy5(21 —7) = C(Zl’waﬁ’zbwyﬁ;pB)' (11)

The function c,gys(z1—2,) depends on the z component of
the distance between two molecules.

Minimizing Eq. (10) with respect to the density with no
external potential other than the hard needle wall, gives a
coupled integral equation:

m—1 2m—1

Pap(a) = % eXp[ > >

y=0 &=0

X(p.MzJ—%)]. (12)

The symmetry about the z axis implies that for any value of
the angle ¢ the density profiles are equal. Thus ¢z can be
taken to be zero and we can write

dzlcaﬁyﬁ(zl - Z)

m—1 2m-1
Pa(2) = % eXp[ > fdzl(m(zl) - @> 2 Caoyslzi —z)].

=0 N/ 5o
(13)

In this equation, p,(z) is the number density of molecules for
any given value of ¢ and 6,. From the DCF of the homoge-
neous HGO fluid, and from the coupled integral equations,
Eq. (13), the density profile of confined fluid is calculated,
and thereby the surface anchoring can be studied.

III. THE DIRECT CORRELATION FUNCTION OF HGO
FLUID

The interaction between two hard ellipsoidal particles by
means of the HGO potential is given by

0 if l"u?()'(flz,Wl,W2)

U (Fiawi,wy) = 14
12(F12, Wi, w2) {Oo if ry < (i wpws), (14)

where w;=(6;, ¢;) describes the orientation of the major axis
of particle i and 7,=r,/r, is a unit vector along the line
connecting the centers of the two particles. The range param-
eter o, which represents the closest approach distance [21], is
given by

PHYSICAL REVIEW E 72, 061706 (2005)

1 Flo- Wi+ Py Wo)?
o(Frawywy) =2b| 1 = =y (F1p - Wy _ 12A )
2 1+ x(W; -y)

A A A 2| 1-12
+(”12 Wi —Fla- wp) }} ’ (15)

1= x(Oby - W,)
where
w; = (cos ¢; sin 6;,sin ¢; sin 6;,cos 6;) (16)
and
(k*-1)
= . 17
=) (17

The elongation £ is the ratio of the length 2a to the breath 2b
of ellipsoids, k=2a/2b. The DCF of a fluid of hard ellipsoids
has been calculated by Allen et al. [23] using the Monte
Carlo simulation method. They compared their results with
various theories, and found that the DCF obtained by Marko
[24] was closer to their simulation results than the others.
Here we use the improved Pynn-Wulf [25,26] expression for
the DCF of hard ellipsoids proposed by Marko:

ry—ry

a(F12,w1,W5)

})[1 +ap,(Wy - Wy) ],
(18)

where p,(1)=(3t2=1)/2, Cpy(r) is the Percus-Yevick DCF
[11] for hard spheres, and o(#,,w;,w,) is the closest ap-
proach of HGO particles. We obtain the optimum value of
the parameter a by the variational method introduced by
Marko. The obtained DCF of the HGO fluid is in agreement
with the result obtained by Letz and Latz [27].

C(rip,wy,wy) = CPY(|:

IV. RESULTS AND DISCUSSION

We use the HNC density functional theory described in
Sec. II to find the density profile and order parameters of a
HGO fluid confined between walls using a hard-needle-wall
potential, Eq. (7). Barmes and Cleaver [22] have presented a
study of the effect of confinement on a system of hard
Gaussian ellipsoids interacting with planar substrates
through the hard-needle-wall potential using Monte Carlo
simulation. They also studied the effects of varying density
and particle-substrate interaction, and found an anchoring
transition, from planar to homeotropic alignment, at a re-
duced needle length of k” =~ 1.4451, and k! =~ 3.420 for elon-
gations k=3 and k=35, respectively. We compare our results
for the cases of homeotropic k,< kf and planar k,> kST align-
ment with the Monte Carlo simulation obtained by Barmes
and Cleaver [22]. In our calculation we have used the grand
canonical ensemble where in the equilibrium case, the bulk
density is related to chemical potential and in our system
they are constant [28]. We choose the bulk number density
pp to yield to the same mean number density which is de-
fined as
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e
J dzp(z)
0

P (19)

p=
or imposed number density p=n/V, used in the Monte Carlo
simulations, which is a canonical ensemble, where n is the
number of the particles in the simulation box, V is the vol-
ume of the box, and A*=h/2b is the reduced walls’ separa-
tion. In our calculations we choose h"=12 for k=3 and
h*=20 for k=5 as it is used in the simulations. In Eq. (19),
p(z)=[1/ws][ p(z,w)dw is the angular average number den-
sity and hereafter we call it density. We also introduce the
orientational order parameter;

0..(z) =[1/wy] f p(z,w) Py (w)dwlp(z), (20)

which gives the fractional molecules oriented along the z
axis and provides information on the surface-induced order-
ing with respect to the substrate normal. Function P,(w) is
the second Legendre polynomial. We then solve the coupled
integral equations (13) for N=512, by using an iterative
method.

In Fig. 1, for elongation k=3, reduced needle length
k,=0.6, and bulk density pz=0.246(p=0.28), the density
profile is plotted as a function of the distance from the center
of the slit, z'=z/2b. Also the orientational order parameter
0..(z) is plotted in Fig. 2. The Monte Carlo simulation re-
sults [22] are also plotted for comparison. In Figs. 3 and 4,
the density profile and order parameter are plotted and com-
pared, for k=5, k;=1, and pp=0.1(p=0.11), with the Monte
Carlo simulation [29].

As Figs. 1 and 3 show, the density profile p(z) rises to a
maximum close to the walls, and is an oscillatory function of
distance. The main peak is located at a distance |z"+h"/2]
=k,/2 from the wall and corresponds to the first layer of
molecules. These four figures also show that most of the
molecules are perpendicular to the walls, because when the
density is a maximum, Q_(z) is positive, and when the den-
sity is minimum, very close to the walls, Q..(z) is negative.
These surface-induced changes are associated with a homeo-
tropic arrangement. Positive Q.. means that particles on av-
erage are aligned along the z axis or perpendicular to the
walls whereas negative Q.. corresponds to the situation when
the orientations of particles are close to the xy plane or par-
allel to the walls [30].

We next consider the effect of increasing the reduced
needle length k= ksT used in the particle-wall interaction. For
k=3, k,;=2.4, and pg=0.246(p=0.28), the density profile and
order parameter are plotted in Figs. 5 and 6 respectively. For
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k=5, k,=4, and pg=0.1(p=0.11), the density profile and or-
der parameter are plotted in Figs. 7 and 8. As is seen in Figs.
5 and 7, the main peak of the density profile is located at a
distance |z"+4"/2|=0 from the walls. Since in both Figs. 6
and 8 the order parameter, Q..(z), is negative near the walls,
the particles are arranged in layers with a side by side align-
ment between one layer and the next. In this case, planar
anchoring is occurring.

Now we calculate the density and order parameter
profiles of liquid crystal between the walls for the bulk nem-
atic phase. According to the Barmes-Cleaver [22,29] simula-
tion, the isotropic (nematic) coexistance densities are
p;=0.299(py=0.309), hence we do our calculations for
pp>0.31. In this case we solve the integral equation (13)
numerically to obtain the density and order parameter pro-
files. We chose the bulk density pz=0.325(p=0.34) which is
in the nematic phase. The calculation should be carefully
executed to obtain the required convergence. Therefore, we
used the Picard method in our iteration technique, mixing the
new results, p, (z), with the old one p;,(z), as shown below

pir (zw) = apl, (zw) + (1 - @)pl(zw,).  (21)
In addition a suitable choice of the mixing parameter «, is
necessary, which was chosen to be «<<0.005. Here we do the
calculations for k=3, pp=0.325(p=0.34), and h"=12. For
ky=0.6 the obtained density and order parameter profiles are
compared with the simulations in Figs. 9 and 10, respec-
tively. Later for k;=2.4 these quantities are plotted and com-
pared in Figs. (11) and (12). It is shown in these figures that
the obtained density profiles are in agreement with the Monte
Carlo simulation whereas the order parameters are fairly in
agreement with the simulation except for the region in the
middle of the walls. The main reason for this discrepancy in
our calculations is due to using the integral equations (13)
instead of Egs. (12). In Egs. (13) we have assumed an azi-
muthal symmetry about the z axis to make the numerical
calculation possible.

In conclusion, the present calculations showed that the
HNC density functional theory can be usefully applied to
confined liquid crystals comprising HGO particles with vari-
ous elongations, and to different lengths of hard needles,
representing various particle-substrate interaction through
the hard-needle-wall potential, and that it can correctly pre-
dict both homeotropic and planar anchoring of molecules at
surfaces.
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